A. Bay Name: /0y A
Algebra 1 Date: Va

Transformations of Graphs of Linear Functions
3.7

A family of functions is a group of functions with similar characteristics. The most basic function in a family of functions is
the parent function. For nonconstant linear functions, the parent function is f(x) = x ory = x. The graphs of all other

nonconstant linear functions are transformations of the graph of the parent function. A transformation changes the size,
shape, position, or orientation of a graph.

A translation is a transformation that shifts a graph horizontally or vertically but does not change the size, shape, or
orientation of the graph.

Horizontal Translations Vertical Translations
The graph offy = f(x — hihs a horizontal translation of The graph offy = F(x) + k lis a vertical translation of
the graph of y = f(x), where h # 0. the graphof y = f(x), where k # 0.

y = fx)

Adding k to the outputé shifts the graph down when

Subtracting h from the inputs before evaluating the k < 0 and up when k > 0.

function shifts the graph left when h < 0 and right -
when h > 0.

&

Example 1: Horizontal and Vertical Translations '
Let[f(x) = 2x — 1)Graph (a) @fg(x) = f(x) + 3land ( b)]t_(x) flx+ BLDescnbe the transformations from the
graph of f to the graphs of g and ¢t.
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A reflection is a transformation that flips a graph over a line called the line of reflection.

Reflections in the x-axis Reflections in the y-axi
The graph ofE@ or is a reflection in the x-axis The graph off"ﬁ: f (=x))is a reflection in the y-axis of
of the graph of y = f(x). S the graph of y = f(x). X

Multiplying the outputs by -1 changes their signs. Multiplying the inputs by -1 changes their signs.

Example 2: Reflections in the x-axis and the y-axis

LetmGraph (a)lg g(x) = —f(x) hnd b) t(x) = f(—x). Describe the transformations from the graph of f
to the graphs of g and t. Refiect ovee - X-AXIS
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Stretches and Shrinks . N ‘ﬂ

You can transform a function by muTtipIying all the x-coordinates (inputs) by the same factor a. When a > 1, the
transformation is a horizontal shrink because the graph shrinks toward the y-axis. When 0 < a < 1, the transformation
is a horizontal stretch because the graph stretches away from the y-axis. In each case, the y-intercept stays the same.

You can also transform a function by multiplying all the y-coordinates (outputs) by the same factor a. When a > 1, the
transformation is a vertical stretch because the graph stretches away from the x-axis. When 0 < a < 1, the
transformation is a vertical shrink because the graph shrinks toward the x-axis. In each case, the x-intercept stays the
same.



Vertical Stretches and Shrinks

Horizontal Stretches and Shrinks

is a horizontal stretch or shrink The graph of(y is a vertical stretch or shrink
of the graph of y = f(x), where by & aof the graph of y = f(x), where a > 0
and a
p<Fache4 | y=a-flx),
a>1
= f{x)
Sheink
; . y=a-flx)
,‘_0-‘ ¢ ‘;1 D<a<1
Sheetth The x-intercept

The y-intercept

stays the same. stays the same.

Example 3: Horizontal and Vertical Stretches

Letf (x) = x — 1) Graph (a) mnd (b)ﬁ(x) = 3f(x)|Describe the transformations from the graph of f
to the graphs of g and h. h ('ﬂ - 3{.(7L)
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Example 4: Horizontal and Vertical Shrinks fex) =%\

Letf (x) = x + 2| Graph (a) mm (b)ja(x) == f (x) \Describe the transformations from the graph of f to

the graphs of g and h. _
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Transformations of Graphs

The graphof y = a - f(x — h) + k orthe graph of y = f(ax — h) + k can be obtained from the graph of

y = f(x) by performing these steps.
Step 1: Translate the graph of y = f(x) horizontally h units.
Step 2: Use a to stretch or shrink the resulting graph from Step 1.
Step 3: Reflect the resulting graph from Step 2 whena < 0.
Step 4: Translate the resulting graph from Step 3 vertically k units.
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Example 5: Combining Transformations
Grapﬁlf (x) = xﬁand g(x) = —2x + 3. Describe the transformations from the graph of f to the graphs of g and h.
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Example 6: Solving a Real-Life Problem

A cable company charges customers $60 per month for its service, with no installation fee. The cost to a customer is

represented by c(m) = 60m, where m is the number of months of service. To attract new customers, the cable company

reduces the monthly fee to $30 but adds an installation fee of $45. The cost to a new customer is represented by

r(m) = 30m + 45, where m is the number of months of service. Describe the transformations from the graph of ¢ to the

graph of r. Um)=lom
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