Graphing Linear Equations in Slope-Intercept Form 3.5

The <u>slope</u> m of a nonvertical line passing through two points (x_1, y_1) and (x_2, y_2) is the ratio of the <u>rise</u> (change in y – denoted as Δy) to the <u>run</u> (change in x – denoted as (Δx)

b.

slope=
$$m = \frac{rise}{run} = \frac{change\ in\ y}{change\ in\ x} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2}$$

When the line rises from left to right, the slope is positive. When the line falls from left to right, the slope is negative.

 $\frac{y_2}{x_2}$ (x_1, y_1) rise = $y_2 - y_1$ $v_2 - v_1$ $v_3 - v_4$ $v_4 - v_4$ $v_4 - v_4$ $v_6 - v_6$ $v_7 - v_1$ $v_8 - v_8$ $v_8 - v_1$ $v_8 - v_8$ $v_8 - v_1$ $v_8 - v_8$ $v_8 - v_1$ $v_8 -$

Example 1: Describe the slope of each line. Then find the slope.

 $\frac{upl}{Rgn+4} = \frac{1}{4}$ Slope is $\frac{1}{4}$

Example 2: Finding slope from a table

$$\frac{\Delta y}{\delta x} = \frac{-4}{3} + 3 < \frac{x}{7} + \frac{4}{10} = \frac{20}{7} - 4$$

$$+ 3 < \frac{10}{10} = \frac{8}{7} - 4$$

b.

	X	y	
12	-1	2	7+0
+6)	1	2	L
+2 <	3	2	+0
12 4	5	2	70

C

	x	У	
+05	-3	-3	7+3
, ,	-3	0	-12
to	-3	6	1+3
tol	-3	9	7+3

choose any 2 points

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{14 - 20}{7 - 4} = \frac{-4}{3} = -2$$

Slope is -2

$$\frac{\Delta y}{\Delta x} = \frac{0}{2} = 0$$

Slope is D

$$\frac{\Delta y}{\Delta x} = \frac{3}{0} = UNI$$

slope is undefined

Slope-intercept Form of a Linear Equation

Words: A linear equation in the form y = mx + b is in **slope-intercept form**. The slope of the line is m and the γ -intercept of the line is b.

A linear equation written in the form y = 0x + b, or y = b, is a **constant function**. The graph of a constant function is a horizontal line. : horizontal lines have a slope of

Example 3: Find the slope and y-intercept of the graph of each linear equation.

a.
$$y = 3x - 4$$

b.
$$y = 6.5$$

Solve for y c. -5x - y = -2

Example 4: Graph 2x + y = 2. Identify the x-interescept. 7y value is 6

$$y = -2x + 2$$

2x + (0) = 2

x-int (1,0)

y-int (0,2) Start Also can be found on the graph

Example 5: A submersible that is exploring the ocean floor begins to ascend to the surface. The elevation h (in feet) of the submersible is modeled by the function $h(t) = 650t - 13{,}000$, where t is the time (in minutes) since the submersible began to ascend. -13,000 = h = 0 D=+= 20

a. Graph the function and identify its domain and range.

when onaphine

b. Interpret the slope and the intercepts of the graph.

Slope is 650 - now fast the submersible 1 ascending to the Surface

u-int is (0,-13000)

I where the submersible began its ascent, 13,000-ft below the surface

1300 2600 3900 (6500 9 100 13 000 MAW to read an elevation

Homework: pg 129: 5-8, 10-22 even, 25-33 odd, 38, 45