Functions 3.1

A <u>relation</u> pairs inputs with outputs. When a relation is given as ordered pairs, the x —coordinates are inputs and the y —coordinates are outputs.

Different representations of the same relation:

Ordered Pairs

(-1, 2)(0	2)
	0000
(1, -3)(2	, -2)
(8.3)	1

Table

x	У
-1	2
0	2
1	-3
2	-2
8	-3

Graph

Mapping

A relation that pairs each input with *exactly one* output is a <u>function</u>. One way to test whether a graph is a function is to complete the **Vertical Line Test**. A graph represents a function when no vertical line passes through more than one point on the graph.

Example 2: Determine whether each relation is a function.

a.

Input	-2	-1	0	0	1	2
Output	3	4	5	6	7	8

Not a function 0 repeats

d. $x = y^2$ with inputs x = 0 and x = 1

$$\int 0 = \int y^2 \qquad \int 1 = \int y^2$$

$$0 = y \qquad \pm 1 = y$$

input of x=1
gives two different
outputs

Not afunction

b.

-

c. y = 5x with inputs x = 1, x = 2, x = 3

$$y = 5(1) = 5$$

 $y = 5(2) = 10$
 $y = 5(3) = 15$

Function

Finding Domain and Range: Domain is the set of possible x-values. Range is the set of possible y-values.

To find domain and range from a table, set of ordered pairs and mapping, list the x and y-values from the given set of data.

x	y
2	7
(5)	-3
3	5
-4	-2
(5)	2

C.

Domain: 3-7-2,13,123

Function:

Domain: 3-4,2,3,5

To find domain and range from a graph, list ALL possible x and y-values from the graph.

- 1) Begin with range starting from LEFT to RIGHT. List the farthest point on the left, the correct inequality, then list the farthest point on the right.
- 2) To find range, start from BOTTOM to TOP. List the lowest point on the bottom, the correct inequality, then list the highest point on the top.

Example 1:

Range:

Function:

Example 2:

Domain:

Range: Function: NO

Example 3:

Range:

Function:

Example 4:

Domain: $-2 \le \chi \le 3$

Range: Function:

Identifying Independent and Dependent Variables

The variable that represents the input values of a function is the **independent variable** because it can be any value in the domain. The variable that represents the output values of a function is the dependent variable because it depends on the value of the independent variable. When an equation represents a function, the dependent variable is defined in terms of the independent variable. The statement "y is a function of x" means that y varies depending on the value of x (y depends on x).

dependent independent variable

The function t = 19m + 65 represents the temperature t (in degreese Farenheit) of an over after preheating for m minutes.

a. Identify the independent and dependent variables.

t-dependent variable m-independent
b. A recipe calls for an oven temperature of 350°F. Describe the domain and range of the function.

least amount of time t=19(0)+45 would be 0 min t=65

350 = 19x+65 -65

285 = 19 x

Homework: pg. 94: 4-30 even

15=X

